

ULTRAVIOLET CROSSLINKING;

A COST EFFECTIVE ALTERNATIVE TO E-BEAM CROSSLINKING OF PE AND HFFR

Mohammad Mohseni

Technical Consultant

AMI "Polymer in Cables" Conference

Virtual Summit 22-24th June 2021

Chemical Crosslinked cables: what crosses your mind?

- Pre-crosslinking
- Punctures
- Under-crosslinking
- Shrinkage
- Orange Skin
- The outcome of extrusion
- Operating conditions
- Special storage conditions

- lumpy surface
- cable failures
- poor hot set
- choosing the right tools
- unacceptable appearance
- finding out too late
- leading to poor test results
- Shelf life

An introduction to Photochemistry

The study of chemical reactions and physical behaviour that may occur under the influence of visible and/or ultraviolet light is called **Photochemistry**

Electromagnetic Spectrum

Note:

Orbitals are pictorial representation of wave functions that describe the probability of a electron's quantum state as a function of position, time, momentum, and spin.

Fluorescence

Phosphorescence

Examples of Phosphorescence

Glow in the dark stick

signage

Amount of Time for Interactions

	Process	Process Transition		
Light Absorption (Excitation)		$S_0 \rightarrow S_n$	10 ⁻¹⁵ (instantaneou	s)
Internal Conversion		$S_n \rightarrow S_1$	10 ⁻¹⁴ to 10 ⁻¹¹	Just for perspective:
Vibrational Relaxation		$S_n^* \rightarrow S_n$	10 ⁻¹² to 10 ⁻¹⁰	The time the insulation spends in 1 meter UV
Intersystem Crossing		$S_1 \rightarrow T_1$	10 ⁻¹¹ to 10 ⁻⁶	300m/min is 0.2 sec,
	Fluorescence	$S_1 \rightarrow S_0$	10 ⁻⁹ to 10 ⁻⁶	would have been at
	Phosphorescence*	$T_1 \rightarrow S_0$	10 ⁻³ to 100	some resulting in
Non-Radiative Decay**		$S_1 \rightarrow S_0$	10 ⁻⁷ to 10 ⁻⁵	crosslink reactions
		$T_1 \rightarrow S_0$	10 ⁻³ to 100	

*The singlet to triplet (or reverse) transition involves a change in electronic state. For this reason, the lifetime of the triplet state is longer the singlet state and this allows the unpair electron to undergo chemical reactions

Non-radiative decay** may take place by intermolecular energy transfer to a different molecule in a process called **quenching**

Summary of the process

How is chemical and radiation crosslinking similar?

-Both require the formation of free radicals that extract hydrogen atoms from polymers to be crosslinked

-After hydrogen extraction, the polymeric free radicals will react with other polymers to form crosslink chains

Main UV crosslinking equipment

UV Radiator

Purpose: To provide the required amount (intensity) of the threshold frequency (UV radiation) that will promote Electrons to the anti bonding energy level (singlet & triplet) in order to produce free radicals that results in crosslinking reactions

Chiller

Purpose: The amount of heat generated would eventually lead to the damage of the LED lamps and the electronic components. It is imperative that the system be kept below 50° C.

Extractor

The excitation of electrons into free radicals would produce trace amount of toxic gases e.g. Ozone, Oxides of N2, Carbon Monoxide. Such gases are harmful to the operators as well as the equipment.

Equipment setup in Extruder Line

PLECHEM

UV vs E-Beam - Physical method

Typical 2.5 MeV system Cost : more than 1 Million USD Also building cost should be added

Required Space Land : 230 m2 Building height : 20m

Required Power 100 kW

UV Crosslinking system

Cost : 60,000 USD Required Space : 2.5 x 2 = 5 m2 ;

Required Power : 20kW

UV crosslinked XLPE Type tests

The cable extrusion parameters listed below :

Plexchem Technologies Pte Ltd a) Cable size $: 6.0 \text{ mm}^2 \text{ (copper)}$ Supplier Grade UV LVXLPE 818C b) Screw Speed : 20.0 rpm Lot No 190421 MC-3 c) Line Speed : 30 m/min d) UV Power Purpose Ageing Properties Improvement : 70% : 170°C - 180°C e) Melt Temperature

1. Tensile strength and Elongation at Break (Before Ageing)

No. of specimens / Colors	Sample 1 / Natural	Sample 2 / Natural	Sample 3 / Natural	
Tensile Strength (>12.5 N/mm ²)	19.76	21.91	20.44	
Elongation at Break (> 200%)	454	447	489	
2. After agein	g without conducto	r (135°C, 168 hours	s)	
Tensile Strength	(>12.5 N/mm²)	22.81	22.55	21.19
Max. Variation ±	± 25%	15.44	2.92	3.67
Elongation at Br	eak (> 200%)	441	420	486
Max. Variation ±	± 25%	-2.86	-6.04	-0.61
3. After ageing with conductor	r (150°C, 168 hours)		
Tensile Strength (>12.5 N/mm ²)	20.01	19.71	19.93	
Max. Variation ± 30%	1.27	-10.04	-2.50	
Elongation at Break (> 200%)	408	419	454	
Max. Variation ± 30%	-10.13	-6.26	-7.16	

ABBER	LiAL
TECHNOLOGY	MATTERS

4. Hot Set and Shrinkage Test

Shrinkage (< 4 %)	0
Hot set (Under Load < 175 %)	85
Permanent Set (Cooling < 15 %)	5

5. Bending Test After Ageing(150°C, 240 hours)

No of turns (6)	No Crack	No Crack	No Crack

6.Oxidative Induction Time (OIT) minutes

Before Ageing	264	315	315
After ageing with conductor			
(150°C, 168 hours)	246	257	259
After ageing with conductor (150°C, 168 hours)	246	257	25

Before Ageing

After Ageing 135°C, 168 hours without conductor

...Type tests

0

90

0

0

70

0

After Ageing 150°C, 168 hours with conductor

Bending Test After Ageing 150°C, 240 hours

Cross-linked Halogen Free compounds

Grade	Plexlink 2235X-UV				
Description	Crosslinkable, h	alogen fre	e, low smoke fla	ame retardant.	
Application	Insulation and s	hea <mark>thi</mark> ng c	ompound for ca	bles.	
Material Designation	EN 50264-1 typ	e EI 109 &	EM 104		
Properties	Test Method	Unit	Specification	Typical Value	
Density	ASTM D 792	g/cm3		Approx. 1.5	
Tensile Strength	IEC 811-1-1	MPa	> 10	14.0	
Elongation at Break	IEC 811-1-1	%	> 150	190	
HOT set test after UV curing	IEC 811-2-1				
Elongation under load %	(200'C , 15 min	%	< 100	55	
Permanent Elongation after cooling	20 N/cm2)	%	< 25	5	
After Ageing at 135°C, 168 hrs					
Tensile Strength	IEC 811-1-2	MPa	> 10	14.0	
Max. Variation		%	+/- 30	+ 11	
Elongation at Break	IEC 811-1-2	%	> 150	170	
Max. variation		%	+/- 30	- 6	
After Ageing at 120°C, 240 hrs					
Tensile Strength	IEC 811-1-2	MPa	> 10	14.5	
Max. Variation		%	+/- 30	+ 16.5	
Elongation at Break	IEC 811-1-2	%	> 125	165	
Max. variation		%	+/- 30	- 8	
Ozone resistance test Method A 250-300 x10-4 25'C 24 h	EN 50305		No crack	All PASS	
Method B 20+/-50 x10-6 , 40'C , 72 h			No crack		
Water Absorption Test, after 70°C, 168 hrs	IEC 60811-1-3				
Max. Weight increase mg/cm2		Mg/cm2	15	6	
Mineral Oil resistance with IRM 902	IEC 60811-2-1				
Tensile Strength . Max variation		%	+/- 30	15	
Elongation at break , Max variation	100'C , 72h	%	+/- 40	20	
Fuel resistance with IRM 903	IEC 60811-2-1				
Tensile Strength , Max variation		%	+/- 30	12	
Elongation at break , Max variation	70'C,168h	%	+/- 40	26	

PLEXLINK 2235X-UV Complying EI 109 & EM 104 EN 50264-1

Bending test at low temperature Elongation at low temperature , Min	IEC 60811-1-4 -40 'C	_	No cracks	PASSED
		%	30%	>100 %
Pressure test at high temperature $~~(100^{\circ}\text{C}$, 4 h)	IEC 811-3-1	%	< 50	23
Flame Retardant (Vertical Burning)	IEC 60332-1			
Distance between:				
Lower edge of top clamp & onset of charred portion		mm	> 50	200
Bunched Cable test	IEC 60332-3-24	mm	<u>></u> 2.5 m	PASS
Oxygen Index	ASTM D 2863	%	> 30	32
Smoke Density	ASTM D2843	Dm	< 40	20
ACID and Alkaline resistance $\ ,$ 23'C , 168 h $\ $	EN 60811-2-1	0/0	+/-30	12
Tensile strength max variation		%	+/-100	27
Elongation at break variation , max		~		
Toxicity Index (ICT) max	EN 50305		3	1
Acid Gas Emission	IEC 60754-2			
- pH	EN 50267-2-2		> 4.3	5.1
- conductivity	EN 50007 0 4	µS/mm	< 10	1.0
Amount of Halogen gas ; HCL , HBr	EN 50207-2-1 EN 60684-2		<0.5	0.2
HF	LN 00004-2		<0.1	0.08

XL-HFFR as PVC substitute for internal Wiring

BS EN 50363-5

BS EN 50525-2-3

BS EN 50525-3-41

BRITISH STANDARD

Insulating, sheathing and covering materials for low voltage energy cables

Part 5: Halogen-free, cross-linked insulating compounds

BS EN 50363-5:2005

BSI Standards Publication

Electric cables — Low voltage energy cables of rated voltages up to and including 450/750 V (U_0/U)

Part 2-31: Cables for general applications — Single core non-sheathed cables with thermoplastic PVC insulation

BS EN 50525-2-31:2011

BS EN 50525-3-41:2011

BSI Standards Publication

Electric cables — Low voltage energy cables of rated voltages up to and including 450/750 V (U_0/U)

Part 3-41: Cables with special fire performance — Single core non-sheathed cables with halogen-free crosslinked insulation, and low emission of smoke

Ref No	Test	Unit	Test method described in IEC 60811		Requirement	Results
			Section	Clause	EI5	
1	Mechanical Properties					
1.1	Properties before aging		1-1	9.1		
1.1.1	Values to be obtained for the tensile strength					
	median value , min	N/mm2			10	20
1.1.2	Values to be obtained for the Elongation at break					
	median value , min	%			125	256
1.2	Properties after aging in air oven		1-2	8.1.3.1		
1.2.1	Aging condition					
	Temperature	С			135+/-2	
	duration of temerature	h			7x24	
1.2.2	Values to be obtained for the tensile strength					
	median value , min	N/mm2				
	variation , max	%			+/- 30	4.3
1.2.3	Values to be obtained for the Elongation at break					
	median value , min	%			+/- 30	11.6
	variation , max	%				
2	Hot Set Test					
2.1	Condition of treatment		2-1	9		
	Temperature	С			200 +/- 3	
	Time under load	min			15	
	mechanical stress	N/cm2			20	
2.2	Test requirements					
	max elongationunder load	%			100	65
	max elongationunder after loading	%			25	4
3	Pressure test at high temperature					
3.1	Test condition		3-1	8.1		
	Forced exerted by the blade	N	3-1	8.1.4		
	duration of heating under load	h	3-1	8.1.5		
	Iemperature	C			100 +/- 2	
3.2	Results to be obtained	0/			50	
	median of the depth of indentation	%			50	22

Test results – EI5 grade

4 Bending at low temperature					
4.1 Test Conditions:		1-4	8.1		
Temperature	С			-15 +/-2	
period of application of low temperature	h	1-4	8.1.4		
4.2 Results to be obtained					Passed
5 Elongation test at low temperature					
5.1 Test Conditions:		1-4	8.3		
Temperature	С			-15 +/-2	
period of application of low temperature	h	1-4	8.3.4		
5.2 Results to be obtained					
Elongation without break , min	%			30	110
6 Ozone resistance test					
6.1 Method A		2-1	8		
Test temperature	С			25 +-2	
Test duration	h			24	
Ozone concentration (by volume)	%			250 to 300 E-4	
6.2 Method B		EN 50396	8.1.3		
Test temperature	С			40 +/- 2	
Test duration	h			72	
Ozone concentration (by volume)	%			200 +/- 50 E-6	
6.3 Results to be obtained					Passed
7 Assessment of halogens					
7.1PH , min		EN 50267- 2-2		4.3	6.2
7.2 Conductivity, max	microS/ mm	EN 50267- 2-2		10	less 0.5
7.3 Amound of halogen acid gas					
HCl and HBr , max	%	EN 50267- 2-1		0.5	Passed
HF, max	%	EN 60684- 2		0.1	Passed
8Oxygen Index	%	Additional	test		29

An Alternative to PVC Insulation ?

- Would be 90'C rated
- Halogen free
- Low smoke
- Low Acidity
- Colourable
- Speed up to 300m/min
- Not hazardous in manufacture & disposal
- No plasticisers

FR-XLPE			
Material	USD /kg	Kg	USD
LLDPE	1.25	100	125
CaCO3	0.2	60	12
ATH	1	5	5
UV initiator	8	2.4	19.2
Silicon Oil	5	0.2	1
PE WAX	3	0.2	0.6
Anti Oxidant	8	0.1	0.8
MAH	4	4	16
Total material		171.9	179.6
cost			\$ 1,044.79
Compounding			\$ 200
Cost (per tone)			\$ 1.244.79

Advantage of FR-XL in rating factor

Rating of 90'C insulation is **26%** higher than 70'C insulation in different temperature

Derating factor of current rating

Ambient Temperature	Rated Temp 70'C	Rated Temp 90'C	Extra Rating
30	1.00	1.00	
35	0.94	0.96	2%
40	0.87	0.91	5%
45	0.79	0.87	10%
50	0.71	0.82	15%
55	0.61	0.76	25%
60	0.50	0.71	42%
65	0.35	0.65	86%

Cost Effectiveness

		Conducto	r	NYA	NHX	PVC	FR- XL	NYA	NHX	
Wire Size	No.	Wire Día	Diameter	Insula Thick	ation ness	Price insul US	1kM ation SD	Currer Rating	nt ; Air (A	Extra Rating
1.5	30	0.25	1.59	0.7	0.7	13.1	12.6	14.5	19	31%
2.5	50	0.25	2.05	0.8	0.8	18.7	17.9	19.5	26	33%
4	56	0.3	2.60	0.8	0.8	22.3	21.4	26	35	35%
6	84	0.3	3.19	0.8	0.8	26.2	25.1	34	45	32%
10	80	0.4	4.15	1.0	1.0	42.2	40.5	46	61	33%
16	126	0.4	5.21	1.0	1.0	50.9	48.8	61	81	33%
25	196	0.4	6.50	1.2	1.2	75.7	72.7	80	106	33%
35	276	0.4	7.71	1.2	1.2	87.6	84.1	99	131	32%
50	396	0.4	9.23	1.4	1.4	122.0	117.1	119	158	33%
70	360	0.5	11.00	1.4	1.4	142.3	136.6	151	200	32%
95	475	0.5	12.64	1.6	1.6	186.7	179.3	182	241	32%
NYA	EN 5052	25-2-31	(H07V-K	()						33%
NHX	EN 5052	25-3-41	(H07Z-K)						

Cost of FR-XL is almost the same as PVC , including many safety advantages

In case copper price raise so much in the market , it preserves the higher current carrying capacity

Using FR-XL provides vantage point for manufacturers committed to quality against ones using rubbish PVC in the market.

MV Spaced Cables

Test results of Spaced cable production

REEL NO. 20160 - 10742 (693meters)	UV LED @ 70% power	Compound: REFERENCE SPECIFICA PLEXLINK 271 MV compound MERALCO		FIONS : D SPECS		
	51 22	SUMMARY OF RES	ULTS			
Properties	STANDARD	10 mpm	15 mpm	20 mpm	Remarks	
1. XLPE Insulation						
Wall Thickness, mm	2.858 min.	3.47 - 4.65	3.51 - 4.61	3.42 - 4.73	Complied	
	3.175 min. ave.	4.06	4.06	4.08	Complied	
Tensile Strength, MPa	12.5 min.	15.09 / 14.95	14.63 / 15.10	15.64 / 13.54	Complied	
Elongation, %	250 min.	538.31% / 530.15%	552.85% / 524.44%	518.97% / 470.14%	Complied	
Hot Creep Test, 150±2°C for 15mins.						
Maximum Elongation under Load	175% max.	100% (outer portion)	90% (outer portion)	100% (outer portion)	Ormaliad	
	-	100% (inner portion)	100% (inner portion)	110% (inner portion)	Complied	
Hot Set: 150±2°C for 5mins.	10% max.	0% (outer portion)	0% (outer portion)	0% (outer portion)		
		0% (inner portion)	0% (inner portion)	0% (inner portion)	Complied	
2. Electrical Properties		M				
AC Voltage Test	Withstand 35 ky for 1 min.		Withstand 35 ky for 1 mir	n.	Complied	

Test results of Spaced cable production

REEL NO.	QTY	REFERENCE SPECIFICATIONS : MERALCO SPECS			
20160 - 10744	527				
	SUMMARY OF R	ESULTS			
Properties	STANDARD	ACTUAL	Remarks		
2. XLPE Insulation					
Wall Thickness, mm	2.858 min.	3.45	Complied		
	3.175 min. ave.	3.66	Complied		
Tensile Strength, MPa	12.5 min.	12.69 / 13.94 / 14.02	Complied		
Elongation, %	250 min.	426.35% / 418.43% / 466.58%	Complied		
Hot Creep Test, 150±2°C for 15mins.					
Maximum Elongation under Load	175% max.	130	Complied		
Hot Set, 150±2°C for 5mins.	10% max.	0	Complied		
5. Electrical Properties					
Rated Voltage	34.5 kV	34.5 kV	Complied		
AC Voltage Test	Withstand 35 kv for 1 min.	Withstand	Complied		

Quality of surface - comparisons

Summary of Advantages

- Low cost of equipment (About USD60K)
- Ease of processing and cleaning
- Inexpensive cost of compound with long shelf life
- Low energy consumption. Only 20KW
- No need for extensive modification of production facility
- Extrusion of PE/HFFR thermoplastic with no pre-crosslinking issue
- High draw down = reduced material consumption
- Post production operations could be done immediately
- Processing XL-HFFR cables

Next Developments

• UV protected cables (2.5% carbon black content).

High concentration of carbon black; blocks UV penetration and requires a special formulation.

Difficult for co-extrusion, if outer semi con is required. Must be extruded in tandem

- Speed adaptation of equipment especially for thin insulation. Our current systems allows for speeds up to 350m/min
- Limitation on high insulation thickness (more than 6 mm)
- Side reactions of photo initiators forms organic by products which are flammable. Reduces effectiveness in HFFR formulations.
- High degree of Crosslink (typical hot set is <40%) reduces elongation values.
- Special colours masterbatches have to be used.

Safety Requirements

- Irradiation. Never look into the beam of a high power LED; the lights very high intensity damage your eyes.
- Ozone generation: Short wavelength (,240nm) light may generate ozone from oxygen (however our wavelength is between 350-400nm) and our unit comes with a well ventilated fume hood.
- Lamps: Most lamps operate at high temperature and at high vapour pressure. Never move or touch lamps during operation.

Thank you for your attention

The good news under quantum rules, if you understood nothing you have understood everything

www.Plexchem.com.sg