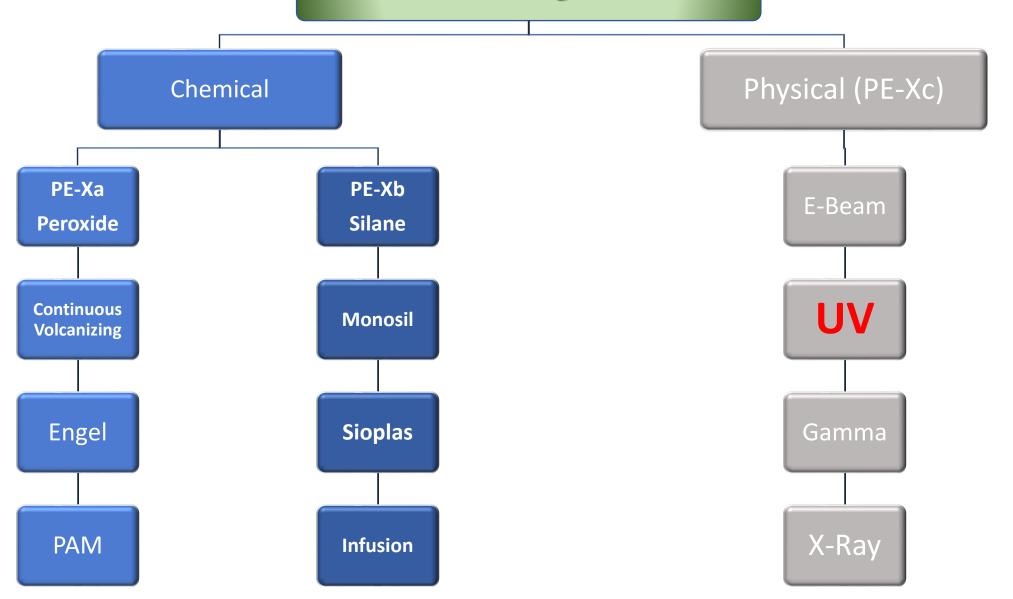


ULTRAVIOLET CROSSLINKING

A COST EFFECTIVE ALTERNATIVE TO E-BEAM CROSSLINKING OF PE AND HFFR


Maurice Alphonso

Technical Director

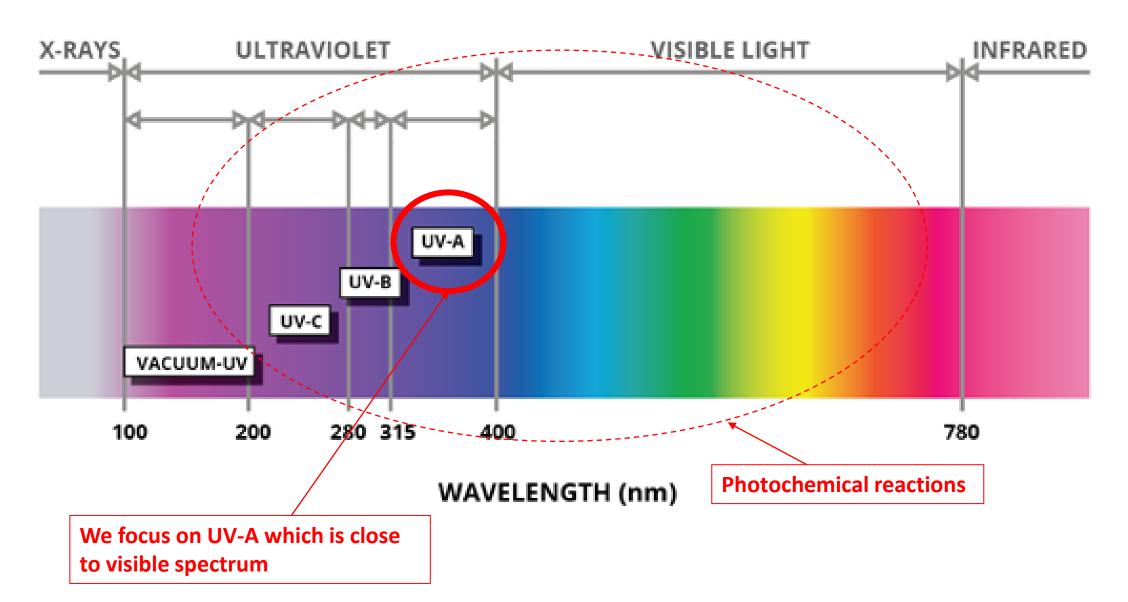
PE Crosslinking methods

Chemical Crosslinked cables: what crosses your mind?

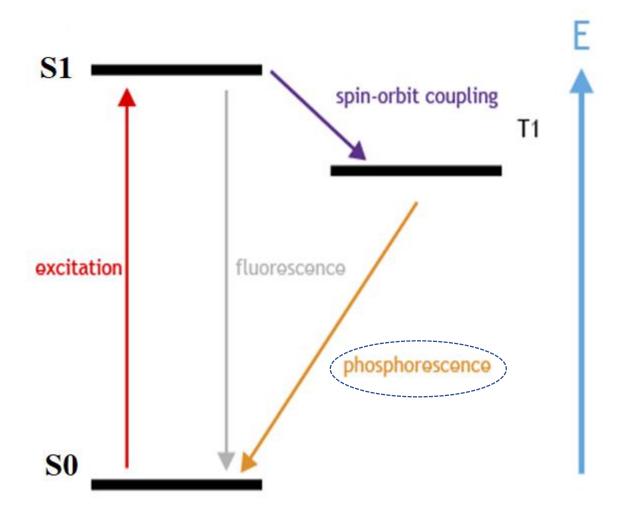
- Punctures
- Under-crosslinking
- Shrinkage
- Orange Skin
- The outcome of extrusion
- Operating conditions
- Special storage conditions

- lumpy surface
- cable failures
- poor hot set
- choosing the right tools
- unacceptable appearance
- finding out too late
- leading to poor test results
- Shelf life

Because the crosslink chemicals interfere with the extrusion process


An introduction to Photochemistry

The study of chemical reactions and physical behaviour that may occur under the influence of visible and/or ultraviolet light is called **Photochemistry**

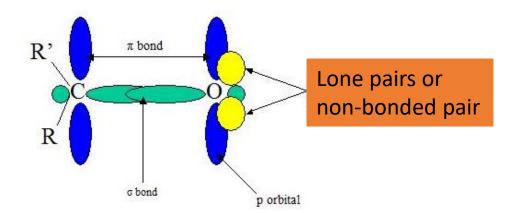

Electromagnetic Spectrum

Phosphorescence

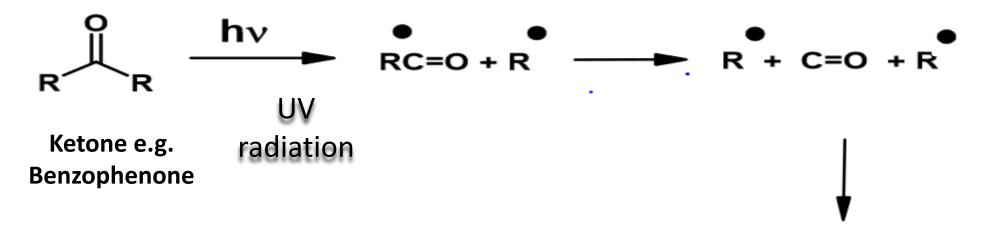
Examples of Phosphorescence

Glow in the dark stick

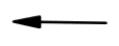
signage


Amount of Time for Interactions

Process		Transition	Timescale (sec)	
Light Absorption (Excitation)		$S_0 \rightarrow S_n$	10 ⁻¹⁵ (instantaneou	ıs)
Internal Conversion		$S_n \rightarrow S_1$	10 ⁻¹⁴ to 10 ⁻¹¹	Just for perspective:
Vibrational Relaxation		$S_n^* \rightarrow S_n$	10 ⁻¹² to 10 ⁻¹⁰	The time the insulation spends in 1 meter UV
Intersystem Crossing		$S_1 \rightarrow T_1$	10 ⁻¹¹ to 10 ⁻⁶	chamber at a speed of 300m/min is 0.2 sec, and in that time there
Fluorescence		$S_1 \rightarrow S_0$	10 ⁻⁹ to 10 ⁻⁶	would have been at
	Phosphorescence*	$T_1 \rightarrow S_0$	10 ⁻³ to 100	least 10 ⁶ interactions many resulting in
Non-Radiative Decay**		$S_1 \rightarrow S_0$	10 ⁻⁷ to 10 ⁻⁵	crosslink reactions
		$T_1 \rightarrow S_0$	10 ⁻³ to 100	


^{*}The singlet to triplet (or reverse) transition involves a change in electronic state. For this reason, the lifetime of the triplet state is longer the singlet state and this allows the unpair electron to undergo chemical reactions

Non-radiative decay** may take place by intermolecular energy transfer to a different molecule in a process called quenching



Summary of the process

2nd step; Free radical generation with Carbon monoxide formation

4th step; Polymeric free radical combine to form crosslink chains

3rd step; Free radical extraction of Hydrogen atom to produce polymeric free radicals

How is chemical and radiation crosslinking similar?

-Both require the formation of free radicals that extract hydrogen atoms from polymers to be crosslinked

-After hydrogen extraction, the polymeric free radicals will react with other polymers to form crosslink chains

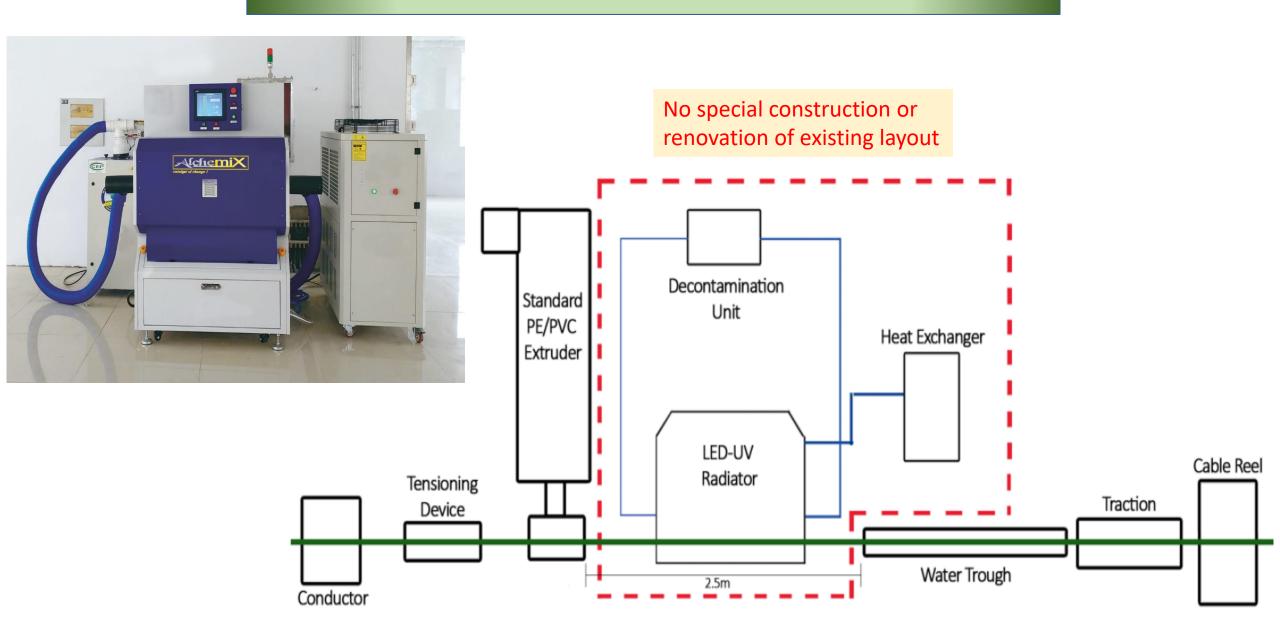
Main UV crosslinking equipment

UV Radiator

Purpose: To provide the required amount (intensity) of the threshold frequency (UV radiation) that will promote Electrons to the anti-bonding energy level (singlet & triplet) in order to produce free radicals that results in crosslinking reactions

Chiller

Purpose: The amount of heat generated would eventually lead to the damage of the LED lamps and the electronic components. It is imperative that the system be kept below 50° C.


Extractor

The excitation of electrons into free radicals would produce trace amount of toxic gases e.g. Ozone, Oxides of N2, Carbon Monoxide. Such gases are harmful to the operators as well as the equipment.

Equipment setup in Extruder Line

UV vs E-Beam - Physical method

Typical 2.5 MeV system

Cost: more than 1 Million USD

Also building cost should be added

Required Space

Land: 230 m2

Building height: 20m

Required Power

100 kW

UV Crosslinking system

Cost: 60,000 USD

Required Space: 2.5 x 2 = 5 m2; Required Power: 20kW

UV Equipment setup and run (Video)

PRODUCTION OF LED-UV CROSSLINKED CABLES

ALCHEMIX PTE LTD

Products made using UV crosslinking

- Low voltage XLPE
- Low voltage highly filled crosslinked cables (using CaCO3) which is price competitive with PVC
- Medium Voltage Cables
- Crosslinked HFFR cables
- Using a masterbatch to make LV XLPE cables (recent innovation)

UV crosslinked XLPE Type tests

Supplier Plexchem Technologies Pte Ltd

Grade UV LVXLPE 818C

Lot No 190421 MC-3

Purpose Ageing Properties Improvement

The cable extrusion parameters listed below:

a) Cable size : 6.0 mm² (copper)

b) Screw Speed : 20.0 rpm

c) Line Speed : 30 m/min

d) UV Power : 70%

e) Melt Temperature : 170°C - 180°C

1. Tensile strength and Elongation at Break (Before Ageing)

No. of specimens / Colors	Sample 1 / Natural	Sample 2 / Natural	Sample 3 / Natural
Tensile Strength (>12.5 N/mm²)	19.76	21.91	20.44
Elongation at Break (> 200%)	454	447	489

2. After ageing without conductor (135°C, 168 hours)

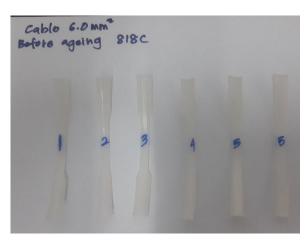
Tensile Strength (>12.5 N/mm²)	22.81	22.55	21.19
Max. Variation ± 25%	15.44	2.92	3.67
Elongation at Break (> 200%)	441	420	486
Max. Variation ± 25%	-2.86	-6.04	-0.61

3. After ageing with conductor (150°C, 168 hours)

Tensile Strength (>12.5 N/mm²)	20.01	19.71	19.93
Max. Variation ± 30%	1.27	-10.04	-2.50
Elongation at Break (> 200%)	408	419	454
Max. Variation ± 30%	-10.13	-6.26	-7.16

...Type tests

4. Hot Set and Shrinkage Test

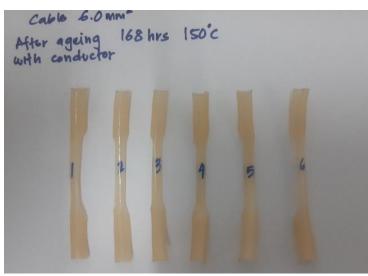

Shrinkage (< 4 %)	0	0	0
Hot set (Under Load < 175 %)	85	70	90
Permanent Set (Cooling < 15 %)	5	0	0

5. Bending Test After Ageing (150°C, 240 hours)

No of turns (6) No Crack No Crack No Crack
--

6.Oxidative Induction Time (OIT) minutes

Before Ageing	264	315	315
After ageing with conductor			
(150°C, 168 hours)	246	257	259


Before Ageing

After Ageing 135°C, 168 hours without conductor

After Ageing 150°C, 168 hours with conductor

Bending Test After Ageing 150°C, 240 hours

XL/HFFR insulation as PVC substitute for internal Wiring

BS EN 50363-5

BS EN 50525-2-3

BS EN 50525-3-41

BRITISH STANDARD

Insulating, sheathing and covering materials for low voltage energy cables

Part 5: Halogen-free, cross-linked insulating compounds

BS EN 50363-5:2005

BS EN 50525-2-31:2011

Electric cables — Low voltage energy cables of rated voltages up to and including 450/750 V (U_0/U)

Part 2-31: Cables for general applications
— Single core non-sheathed cables with
thermoplastic PVC insulation

Electric cables — Low voltage energy cables of rated voltages up to and including 450/750 V (U_0/U)

Part 3-41: Cables with special fire performance — Single core non-sheathed cables with halogen-free crosslinked insulation, and low emission of smoke

An Alternative to PVC Insulation?

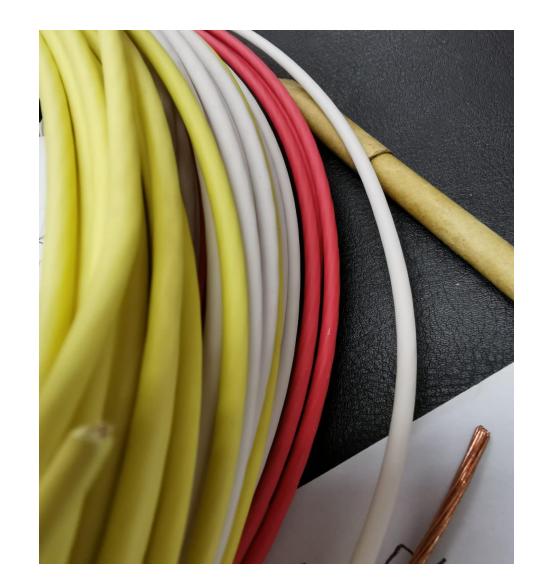
- An inexpensive crosslinkable compound
- Would be 90°C rated
- Halogen free
- Low smoke
- Low Acidity
- Colourable (except black)
- Speed up to 300m/min
- Not hazardous in manufacture & disposal
- No plasticisers

FR-XLPE						
Material	USD /kg	Kg	USD			
LLDPE	1.15	100	115			
CaCO3	0.2	60	12			
ATH	1	5	5			
UV initiator	8	2.4	19.2			
Silicon Oil	4	0.2	0.8			
PE WAX	3	0.2	0.6			
Anti Oxidant	8	0.1	0.8			
MAH	4	4	16			
Total material		171.9	179.6			
cost			\$ 985.50			
Compounding			\$ 200			
Cost (per ton)			\$ 1,186			

Ref No	Test	Unit	Test me described 6081	l in IEC	Requirement	Results
			Section	Clause	EI5	
	1 Mechanical Properties					
1.	1 Properties before aging		1-1	9.1		
1.1.	Values to be obtained for the tensile strength					
	median value , min	N/mm2			10	20
1.1.	Values to be obtained for the Elongation at break					
	median value , min	%			125	256
1	2 Properties after aging in air oven		1-2	8.1.3.1		
1.2.	1 Aging condition					
	Temperature	С			135+/-2	
	duration of temerature	h			7x24	
1.2.	2 Values to be obtained for the tensile strength					
	median value , min	N/mm2				
	variation , max	%			+/- 30	4.3
1.2.	Values to be obtained for the Elongation at break					
	median value , min	%			+/- 30	11.6
	variation , max	%				
	2 Hot Set Test					
2.	1 Condition of treatment		2-1	9		
	Temperature	С			200 +/- 3	
	Time under load	min			15	
	mechanical stress	N/cm2			20	
2.:	2Test requirements					
	max elongationunder load	%			100	65
	max elongationunder after loading	%			25	4
	3 Pressure test at high temperature					
3.	1Test condition		3-1	8.1		
	Forced exerted by the blade	N	3-1	8.1.4		
	duration of heating under load	h	3-1	8.1.5		
	Temperature	С			100 +/- 2	
3	2 Results to be obtained					
	median of the depth of indentation	%			50	22

Test results – EI5 grade

4 Bending at low temperature					
4.1 Test Conditions:		1-4	8.1		
Temperature	С			-15 +/-2	
period of application of low temperature	h	1-4	8.1.4		
4.2 Results to be obtained					Passed
5 Elongation test at low temperature					
5.1 Test Conditions:		1-4	8.3		
Temperature	С			-15 +/-2	
period of application of low temperature	h	1-4	8.3.4		
5.2 Results to be obtained					
Elongation without break , min	%			30	110
6 Ozone resistance test					
6.1 Method A		2-1	8		
Test temperature	С			25 +-2	
Test duration	h			24	
Ozone concentration (by volume)	%			250 to 300 E-4	
6.2 Method B		EN 50396	8.1.3		
Test temperature	С			40 +/- 2	
Test duration	h			72	
Ozone concentration (by volume)	%			200 +/- 50 E-6	
6.3 Results to be obtained					Passed
7 Assessment of halogens					
7.1 PH , min		EN 50267- 2-2		4.3	6.2
7.2 Conductivity, max	microS/ mm	EN 50267- 2-2		10	less 0.5
7.3 Amound of halogen acid gas					
HCl and HBr , max	%	EN 50267- 2-1		0.5	Passed
HF, max	%	EN 60684- 2		0.1	Passed
8 Oxygen Index	%	Additional	test		29



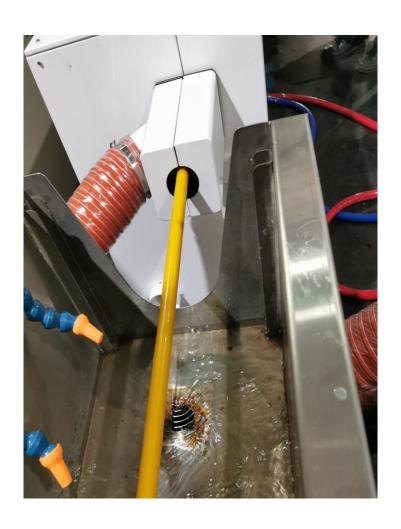
Rating of 90'C insulation is 26% higher than 70'C insulation in different temperature

Derating factor of current rating

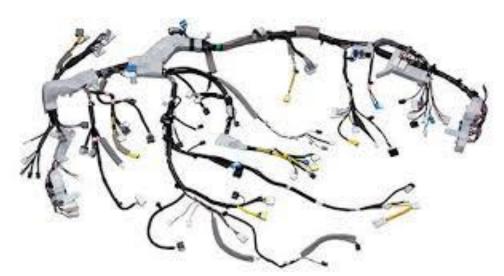
Ambient Temperature	Rated Temp 70'C	Rated Temp 90'C	Extra Rating
30	1.00	1.00	
35	0.94	0.96	2%
40	0.87	0.91	5%
45	0.79	0.87	10%
50	0.71	0.82	15%
55	0.61	0.76	25%
60	0.50	0.71	42%
65	0.35	0.65	86%

Cost Effectiveness

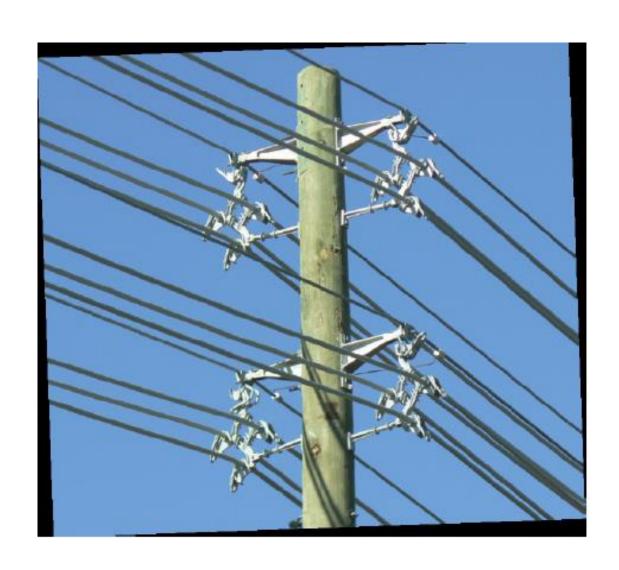
		Conducto	r	NYA	NHX	PVC	FR- XL	NYA	NHX	
Wire Size	No.	Wire Día	Diameter	Insulation Thickness		insul	1kM ation SD	Currer Rating	nt ; Air (A)	Extra Rating
1.5	30	0.25	1.59	0.7	0.7	13.1	12.6	14.5	19	31%
2.5	50	0.25	2.05	0.8	0.8	18.7	17.9	19.5	26	33%
4	56	0.3	2.60	0.8	0.8	22.3	21.4	26	35	35%
6	84	0.3	3.19	0.8	0.8	26.2	25.1	34	45	32%
10	80	0.4	4.15	1.0	1.0	42.2	40.5	46	61	33%
16	126	0.4	5.21	1.0	1.0	50.9	48.8	61	81	33%
25	196	0.4	6.50	1.2	1.2	75.7	72.7	80	106	33%
35	276	0.4	7.71	1.2	1.2	87.6	84.1	99	131	32%
50	396	0.4	9.23	1.4	1.4	122.0	117.1	119	158	33%
70	360	0.5	11.00	1.4	1.4	142.3	136.6	151	200	32%
95	475	0.5	12.64	1.6	1.6	186.7	179.3	182	241	32%
NYA	EN 5052	25-2-31	(H07V-K)						33%
NHX	EN 5052	25-3-41	(H07Z-K)							

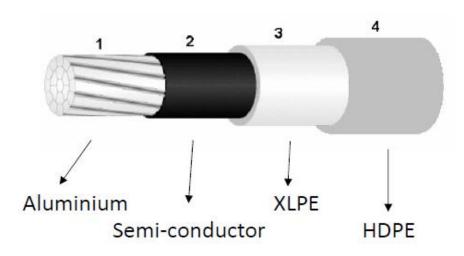

Cost of FR-XL is almost the same as PVC, with many safety advantages

With higher copper prices, it preserves the higher current carrying capacity


Using FR-XL provides vantage point for manufacturers committed to quality against ones using rubbish PVC in the market.

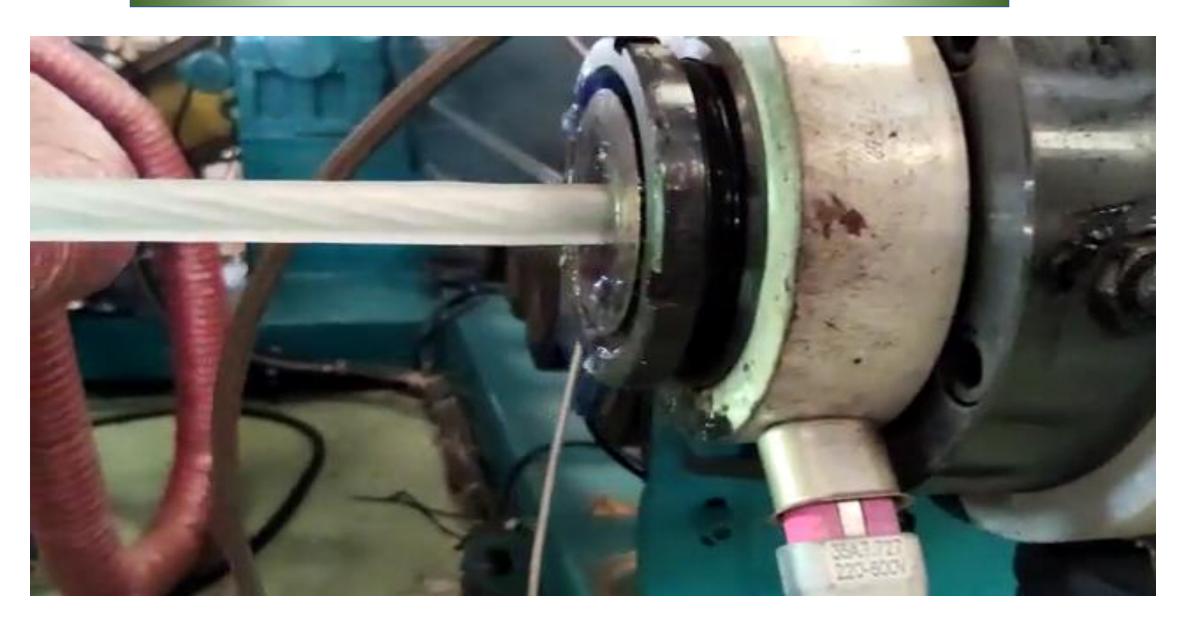
Cross-linked Halogen Free compounds


Grade	Plexlink 2235X-UV						
Description	Crosslinkable, h	Crosslinkable, halogen free, low smoke flame retardant.					
Application	Insulation and sheathing compound for cables.						
Material Designation	EN 50264-1 type EI 109 & EM 104						
Properties	Test Method	Unit	Specification	Typical Value			
Density	ASTM D 792	g/cm3		Approx. 1.5			
Tensile Strength	IEC 811-1-1	MPa	> 10	14.0			
Elongation at Break	IEC 811-1-1	%	> 150	190			
HOT set test after UV curing	IEC 811-2-1						
Elongation under load %	(200'C , 15 min	%	< 100	55			
Permanent Elongation after cooling	20 N/cm2)	%	< 25	5			
After Ageing at 135°C, 168 hrs							
Tensile Strength	IEC 811-1-2	MPa	> 10	14.0			
Max. Variation		%	+/- 30	+ 11			
Elongation at Break	IEC 811-1-2	%	> 150	170			
Max. variation		%	+/- 30	- 6			
After Ageing at 120°C, 240 hrs							
Tensile Strength	IEC 811-1-2	MPa	> 10	14.5			
Max. Variation		%	+/- 30	+ 16.5			
Elongation at Break	IEC 811-1-2	%	> 125	165			
Max. variation		%	+/- 30	- 8			
Ozone resistance test Method A 250-300 x10-4 , 25°C , 24 h Method B 20+/-50 x10-6 , 40°C , 72 h	EN 50305		No crack No crack	All PASS			
Water Absorption Test, after 70°C, 168 hrs	IEC 60811-1-3						
Max. Weight increase mg/cm2		Mg/cm2	15	6			
Mineral Oil resistance with IRM 902	IEC 60811-2-1						
Tensile Strength , Max variation		%	+/- 30	15			
Elongation at break , Max variation	100'C , 72h	%	+/- 40	20			
Fuel resistance with IRM 903	IEC 60811-2-1						
Tensile Strength , Max variation		%	+/- 30	12			
Elongation at break , Max variation	70°C , 168h	%	+/- 40	26			


PLEXLINK 2235X-UV Complying El 109 & EM 104 EN 50264-1

Bending test at low temperature Elongation at low temperature , Min	IEC 60811-1-4 -40 'C	 %	No cracks	PASSED >100 %
Pressure test at high temperature (100°C , 4 h)	IEC 811-3-1	%	< 50	23
Flame Retardant (Vertical Burning)	IEC 60332-1	70	. 30	25
Distance between:				
Lower edge of top clamp & onset of charred portion		mm	> 50	200
Bunched Cable test	IEC 60332-3-24	mm	<u>▶</u> 2.5 m	PASS
Oxygen Index	ASTM D 2863	%	> 30	32
Smoke Density	ASTM D2843	Dm	< 40	20
ACID and Alkaline resistance , 23°C , 168 h Tensile strength max variation Elongation at break variation , max	EN 60811-2-1	% %	+/-30 +/-100	12 27
Toxicity Index (ICT) max	EN 50305		3	1
Acid Gas Emission - pH	IEC 60754-2 EN 50267-2-2		> 4.3	5.1
- conductivity Amount of Halogen gas ; HCL , HBr HF	EN 50267-2-1 EN 60684-2	μS/mm	< 10 <0.5 <0.1	1.0 0.2 0.08

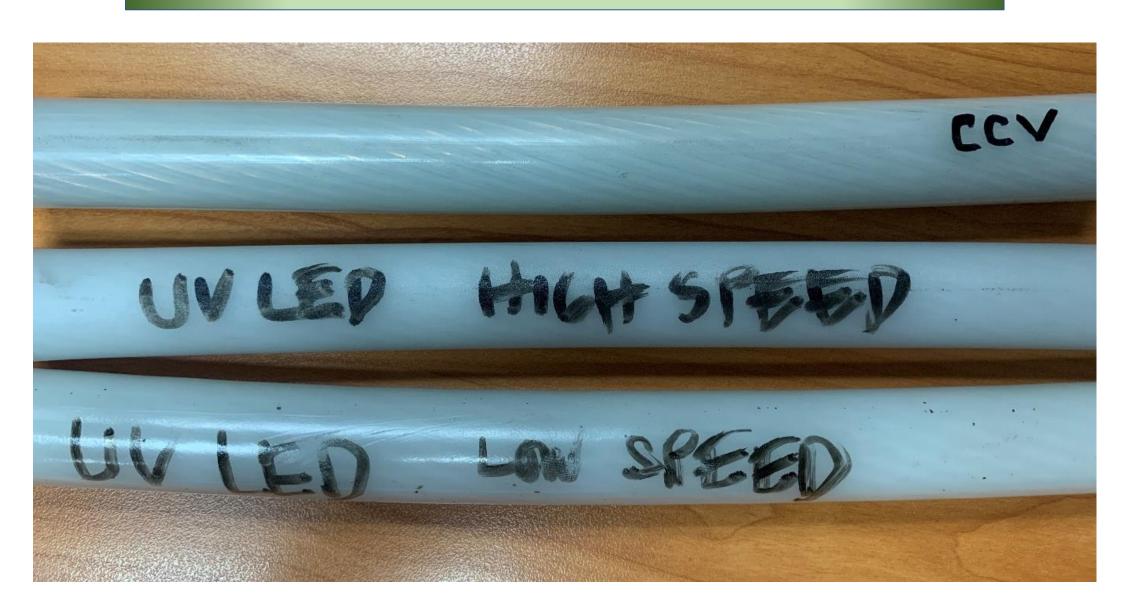
MV Spaced Cables



Production of MV Spaced cable (Video)

Test results of Spaced cable production

REEL NO. 20160 - 10742 (693meters)	UV LED @ 70% power	Compound: PLEXLINK 271 MV comp	REFERENCE SPECIFICATIONS : MERALCO SPECS			
		SUMMARY OF RES	ULTS	7 ¹		
Properties	STANDARD	10 mpm	15 mpm	20 mpm	Remarks	
1. XLPE Insulation						
Wall Thickness, mm	2.858 min.	3.47 - 4.65	3.51 - 4.61	3.42 - 4.73	Complied	
	3.175 min. ave.	4.06	4.06	4.08	Complied	
Tensile Strength, MPa	12.5 min.	15.09 / 14.95	14.63 / 15.10	15.64 / 13.54	Complied	
Elongation, %	250 min.	538.31% / 530.15%	552.85% / 524.44%	518.97% / 470.14%	Complied	
Hot Creep Test, 150±2°C for 15mins.						
Maximum Elongation under Load	175% max.	100% (outer portion)	90% (outer portion)	100% (outer portion)	0	
		100% (inner portion)	100% (inner portion)	110% (inner portion)	Complied	
Hot Set, 150±2°C for 5mins.	10% max.	0% (outer portion)	0% (outer portion)	0% (outer portion)	Complied	
		0% (inner portion)	0% (inner portion)	0% (inner portion)		
2. Electrical Properties						
AC Voltage Test	Withstand 35 kv for 1 min.		Withstand 35 kv for 1 mir	n.	Complied	


Test results of Spaced cable production

REEL NO.	QTY	REFERENCE SPECIFICATIONS :	
20160 - 10744	527	MERALCO SPE	cs
	SUMMARY OF R	RESULTS	
Properties	STANDARD	ACTUAL	Remarks
2. XLPE Insulation			
Wall Thickness, mm	2.858 min.	3.45	Complied
	3.175 min. ave.	3.66	Complied
Tensile Strength, MPa	12.5 min.	12.69 / 13.94 / 14.02	Complied
Elongation, %	250 min.	426.35% / 418.43% / 466.58%	Complied
Hot Creep Test, 150±2°C for 15mins.			
Maximum Elongation under Load	175% max.	130	Complied
Hot Set, 150±2°C for 5mins.	10% max.	0	Complied
5. Electrical Properties			
Rated Voltage	34.5 kV	34.5 kV	Complied
AC Voltage Test	Withstand 35 kv for 1 min.	Withstand	Complied

Quality of surface - comparisons

Production of LV XLPE cables using a masterbatch

- A masterbatch containing UV MB photo initiators & Regular commodity PE: LLDPE (MI 2-4), LDPE (MI 1-2).
- Mixed in a simple tumble mixer in the ratio of 25 Kgs of Masterbatch & 75 Kg of LL or LD.
- Inexpensive, long shelf life & with excellent properties.

cost of usin	g the mast	erbatch			
Product	price	Kg	\$	Kg	\$
Product	030	Νg	Ą	ινg	Ą
LL	1.15	75	86.25	0	0
LD	1.5	0		75	112.5
UV MB	2.3	20	46	20	46
		95	132.25	95	158.5
your com	oound				
cost			1.39		1.67
* cost landed Sir	ganoro				
cost landed 311	igapuic				

今化科技 (武汉) 有限公司

产品名称: <u>UVF1805</u> 批	号: 试机日期:	2021-06-24
------------------------	----------	------------

因: ______ 试机数量: ___

检测报告

	_	性調報						_			
客户	名称		iI	西省越为	电缆股	份有限公司	0	8 4	报告号	JI	HQC21062401
试样名称 本色绝缘黄色色		幣电力电缆 样品数量			样品	编号	JXYG3010				
设备规格 螺杆			螺杆类	型	型 等距不等深带双螺纹		模具	1	挤管式		
温度参	B C		150, 1	60, 170	, 175,	185, 19	5, 210,	230		Ø.	
主机螺杆	T转速			-	出线道	腹		-米/分	主初	电流	
			性能核	測	杨	准依据:					
序号			检测项	相	试样说明					指标	检验结果
1	3/33	热延伸(200℃, 15min,0.2MPa) 负荷下伸长率			-	线 1 线 2 线 3		%	≤175	25 25 35	
		最大永久 , 5min	伸长率			1	线 1 线 2 线 3		%	≨15	-5 -5 -2.5
2	收缩率 130℃ 1小时			É	交联 72H		%	≤4	0		

注: 黄线 3 为色带线条

检测员: 李子奎 审核: 张志育 检测日期: 2021-06-29

今化科技 (武汉) 有限公司

产品名称: UVF1805 试机日期: 2021-06-24

调试原因: 试机数量:

检测报告

	性能	た たんかん こうしゅう こうしゅう こうしゅう しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅ しゅうしゅう しゅう	标准依	据: JBT12	706-2008
序号	检测项目	试样说明	单位	指标	检验结果
3	拉伸强度	黄线1	Мра	≥13.5	21.9
4	断裂伸长率	黄线1	%	≥350	860
5	空气热老化	(135°C, 168h	1)		·
5.1	拉伸强度变化率	黄线1	%	≦20	+5.6
5.2	断裂伸长率变化率	黄线1	%	≦ 20	-8
6	介电强度	黄线1	MV/ m	≥25	40
					※ (武力)
					光子

检测员: 李子奎 审核: 张志育 检测日期: 2021-6-2

Summary of Advantages

- Low cost of equipment (About USD60K)
- Ease of processing and cleaning
- Inexpensive cost of compound with long shelf life
- Low energy consumption. Only 20KW
- No need for extensive modification of production facility
- Extrusion of PE/HFFR thermoplastic with no pre-crosslinking issues
- High draw down = reduced material consumption
- Post production operations could be done immediately
- Processing XL-HFFR cables

Next Phase of Development

• UV protected cables (2.5% carbon black content).

High concentration of carbon black; blocks UV penetration and requires a special formulation.

Difficult for co-extrusion, if outer semi con is required. Must be extruded in tandem

- Speed adaptation of equipment especially for thin insulation. Our current systems allows for speeds up to 350m/min
- Limitation on high insulation thickness (more than 6 mm)
- Side reactions of photo initiators forms organic by products which are flammable. Reduces
 effectiveness in HFFR formulations.
- High degree of Crosslink (typical hot set is <40%) reduces elongation values.
- Special colours masterbatches have to be used.
- EPDM insulation (soon).

Safety Requirements

- Irradiation. Never look into the beam of a high power LED; the lights very high intensity damage your eyes.
- Ozone generation: Short wavelength (,240nm) light may generate ozone from oxygen (however our wavelength is between 350-400nm) and our unit comes with a well ventilated fume system.
- Lamps: Most lamps operate at high temperature and at high vapour pressure. Never move or touch lamps during operation.

Thank you for your attention

